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Using methods from dynamical-systems theory, we reexamine the anomalous noise rise that has
plagued Josephson-junction parametric amplifiers, devices potentially important for astrophysical
measurements in the microwave regime. Our theory explains the puzzling gain-dependent noise
temperature, and leads to new predictions which can be readily tested by experiments. Our ex-
planation is based on a general theory of noise sensitivity near simple bifurcations: Thus, the
same phenomenon should occur in other parametric amplifiers, e.g., those employing semiconduc-

tor lasers.

This Brief Report takes a new look at an old problem,
namely, the observed ‘“noise rise” in superconducting
Josephson-junction parametric amplifiers. The impor-
tance of these devices lies in their potential use in observa-
tional radio astronomy; making amplifiers that operate at
such high frequencies (~1-100 Ghz) is a technologically
difficult task. Although these devices have achieved ap-
preciable gain (>15 dB),!~¢ they have been plagued by a
noise problem>-7 with a characteristic signature previous-
ly unseen in other kinds of parametric amplifiers. Typi-
cally, one expects the noise temperature 7— proportional
to the ratio of broad-band noise amplification Gy to signal
amplification Gs—to be a constant for a given device, in-
dependent of parameter settings. Surprisingly, however,
the Josephson devices show an increase of 7" with increas-
ing Gs: That is, the greater the signal gain, the worse the
signal-to-noise ratio.

Attempts to understand the noise rise have proven
difficult,®-!* and it remains an open problem. The pur-
pose of this Brief Report is to discuss a mechanism that
leads to such a noise rise. Our theory exploits recently
developed insights linking parametric amplification to the
properties of nonlinear dynamical systems near the onset
of simple bifurcations.!>-1® The notion that the noise rise
might be the result of deterministic chaos'*!? is incompa-
tible with these insights, since large Gs is not achieved in
the chaotic regime. Our theory has more in common with
the picture of (random) noise-induced hopping between
coexisting attractors.'* This theory generates a gain-
dependent noise temperature like that observed in experi-
ments, and leads to a number of new predictions that can
be directly tested by future experiments.

Previous theoretical work devoted to Josephson-
junction parametric amplifiers has proven very successful
in understanding the noise-free performance of these de-
vices. '1%20 Typically, this work proceeds from a direct
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analysis of the governing circuit equation, e.g.,

¢+ Bé+sing =A+Bcos(w,t) + Ccos(w;t+0) , (1)

where ¢ is the phase difference between macroscopic wave
functions across the junction, g ~! represents the Q of the
circuit, and A4,B,C are the current drive amplitudes at
zero, pump, and signal frequencies, respectively. High
gain can be achieved in two ‘“modes,” either the three-
photon mode ;=% w,+A, or the four-photon mode
w; =w,+A, with detuning A < w,,.

The new idea behind our approach is to synthesize two
related facts: (i) The high-gain limit of parametric
amplifiers coincides with the onset of bifurcations of the
dynamics of the system, and (ii) it is precisely near such
instabilities that the effective dimension of the dynamics is
drastically reduced, so that the behavior achieves a certain
“universality.”'® Though not recognized as a general
dynamical phenomenon, previous researchers showed that
the high-gain limit of Eq. (1) corresponds to the onset of a
period-doubling bifurcation in the three-photon mode,>2°
and a cusp (or degenerate saddle-node) bifurcation in the
four-photon mode. >’

The key step of our analysis is the observation that the
important dynamics is captured by a simple reduced
equation,

x=ux—x3+ecos(61)+£@) , )

where x represents the system’s output, u varies in propor-
tion to the external control parameter (e.g., ycA—A*,
where A* is the bifurcation point in the absence of signal
and noise), € is proportional to the input signal C, § is pro-
portional to the detuning A, and & is a random noise term.
The remainder of this report is broken into two parts: We
first discuss the precise sense in which the scalar Eq. (2)
describes the full phase-space dynamics, then we present
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the results of a study of this reduced equation, including
specific predictions for future experiments.

We now discuss the origin of Eq. (2), beginning with
the full dynamical system equation (1). To fix ideas, we
focus on the three-photon mode: thus, the signal-free
(C=0) system is near the onset of a period-doubling bi-
furcation. [The four-photon case requires a slight
modification of Eq. (2), but much of the analysis present-
ed here applies in that case also. Moreover, a similar
analysis applies to the case of a symmetry-breaking bifur-
cation, which is expected to be an additional mode of
operation of the unbiased Josephson parametric amplifier,
as yet unobserved. The details for all cases will be
presented elsewhere.?!] Consider the geometry of the dy-
namics in the three-dimensional phase space (¢,4,¢), Fig.
1. The signal-free periodic orbit ®y is cut by a two-
dimensional Poincaré section P. In the presence of the
signal (C>0)—or any perturbation, for that matter
—one finds that successive iterates are confined very near-
ly to a one-dimensional curve: This is the center mani-
fold. Said another way, directions perpendicular to the
center manifold are fast relaxing, and play an unimpor-
tant role in the asymptotic dynamics. This is true regard-
less of the original dimension of phase space.

Figure 1(b) plots a typical noise-free (£ =0) time series
near the period doubling, giving the x value of successive
intersections of the phase-space trajectory with P, for
u <0. Two features are especially of note: (i) Successive
x, oscillate between the positive and negative branches;
these correspond to two branches of the same attractor,
and (ii) each branch follows a smooth, slowly varying
curve having the detuning frequency A=w; —w,/2. Go-
ing back to the continuous-time trajectory ¢(z), it follows
that we can make the decomposition

(1) =D (1) +x (1), (t) , 3

where ®o(¢) has frequency w, and ®;(z) has frequency
w,/2, such that ®,(t+2n/w,) =—®,(t). The reduced
scalar x(¢z) evolves according to Eq. (2), and gives the
magnitude of the displacement along the center manifold.
In the absence of signal and noise, x relaxes to 0 for u <0,
and to = "2 for u > 0. The latter corresponds to the ap-
pearance of a period-doubled frequency in the spectrum of
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FIG. 1. Phase-space dynamics for Eq. (1), u <0. (a) Period-

ic orbit @ is cut by a two-dimensional Poincaré section. (b)
Displacement along the center manifold of successive iterates x,
of the return map. (c) Corresponding continuous-time output.

36 BRIEF REPORTS 753

the full variable ¢. Figure 1(c) illustrates a typical time
series one would obtain by measuring, say, one of the
components of ¢: The quantity x(¢) is then the slowly
varying envelope function.

The essential point is that Eq. (2) properly describes the
reduced dynamics. In order to incorporate the effect of
noise, we have studied Eq. (2) with the white-noise term &
present. From Eq. (3), we can make the connection be-
tween x(z) and the power spectrum for ¢(z).

An analysis of Eq. (2) yields several interesting results.
An important result previously established for the noise-
free (£=0) case is that the presence of the signal shifts
the bifurcation point from the signal-free value 4y =0 to a
new value greater than zero. This suppression of period
doubling has been observed in a number of systems, !7-2223
including numerical integration of Eq. (1).?* In our
present analysis we will focus on the opposite regime
where the system is primarily noise driven and the signal
is relatively small. Here the noise washes out the sharp
transition to period doubling. Nonetheless, the dynamics
may be separated into the three regimes: u <0,
O<u<upy',and u> u', where u' is defined to be the point
of maximum signal gain for a given detuning.

For u <0, both input signal and noise are amplified
with very nearly the same dependence on the control pa-
rameter u. Consequently, there is no gain-dependent
noise rise. In fact, for sufficiently negative u, this regime
can be understood by studying linearized theories for sig-
nal and noise, and as pointed out early on by Feldman and
Levinsen,'® such linearized analyses cannot generate a
noise rise.

The situation is different for 0 <u <u": Here, non-
linear effects are crucial, as the system crosses over to a
switching type of behavior. This switching (or hopping)
occurs between +u'/2 and —pu'/2, the two stable equili-
bria of the unperturbed system x =ux —x3. Thus, the
noise induces hopping between the two closely spaced
branches of the orbit ¢(t). The resulting Poincaré dy-
namics resembles a two-level telegraph process, a fact
which can be exploited to yield analytic results.2! The
switching produces a Lorentzian noise bump in the spec-
trum centered at zero frequency (thus at w,/2 for the
spectrum of ¢), which rapidly diminishes in width and in-
creases in height as u increases. In this regime, both Gs
and T increase, and one observes a noise rise. The results
of analog simulations of Eq. (2) are shown in Fig. 2.
Power spectra reproduce the kind of noise rise seen in ex-
periments on real junctions.>~’ For comparison, Fig. 3
shows results of analog simulations on the full dynamical
equation (1), also displaying a noise rise.

Finally, for 4 > u', Gs now diminishes, while the noise
temperature continues to rise; this regime has no practical
interest.

Our reduced dynamical picture has been studied
analytically for u not too close to zero (i.e., away from cri-
ticality), both for negative u (linearized analysis) and
positive u (switching analysis). From these calculations
and from extensive simulations of Eq. (2), we can make a
number of predictions:?' (i) For u <0, T is essentially
constant, even as Gs increases. (ii) For u>0 (and
nonzero detuning), there exists a u of maximum signal
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FIG. 2. Analog simulation of Eq. (2). (a) g =0. (b) u=u’,
noise bump starting to move inside detuning frequency. Note
diminished signal-to-noise ratio. (¢) u > u’, signal gain falls off,
noise rise continues.

data.® Note that the curves double back after passing u'
(maximum gain point for that §).

All formulas quoted here follow from analytic con-
siderations rather than fitting to simulation data; we ex-
pect these to be most accurate when u is not too close to
zero.

We point out two limitations of the theory: We assume
that the system operates in the vicinity of a single bifurca-
tion with no other instabilities or degeneracies nearby, and
we assume that noise and signal are small enough that
higher-order nonlinearities [not included in Eq. (2)] may
be neglected.

This picture for the origin of the noise-rise in Josephson
junction parametric amplifiers also leads us to a number
of qualitative conclusions. First, since the noise-rise
hinges on the smallness of the detuning A, it has been ob-
served only in these devices because of their unusually
high operating frequencies. It follows that other high-
frequency parametric amplifiers should exhibit this
phenomenon, e.g., modulated semiconductor laser sys-
tems. Second, we conclude (along with others®!!"!4) that
gain, u', while the noise gain (at the signal frequency)
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FIG. 3. Analog simulation of Eq. (1) with A=5x%10 "%aw,.
Idler frequency wi =w,/2 — w;. Effective detuning § is greater

than in Fig. 2 so there is less noise rise. w,/2 here corresponds to
zero frequency in Fig. 2.
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FIG. 4. Digital simulation of Eq. (2), showing ratio Gn/Gs vs
signal gain Gs for several values of detuning 6. The parameter
1 <0 where the curves are flat and y =y’ where Gs is max-
imum.

also reaches a maximum which is beyond u'. Moreover,
u' increases either with increasing noise input or decreas-
ing detuning (see Fig. 4). (iii) For small detuning and
negative u we find Gs « Gy« u ~2, while for positive u the
behavior is Gs«InGy +const e u? (these are power gains).
Furthermore, Gs and Gy increase monotonically with u
including in the crossover region near u=0. (iv) The
bandwidth w over which the gain indicated in (iii) may be
achieved is proportional to |u| for negative u and to
uexp(—ku?) for positive u, where k is a positive con-
stant. Thus we cross over from a region of constant gain-
bandwidth product G 2w to one which rapidly diminishes
and may explain the unexpectedly small values for this
product previously reported for the Josephson devices.>®
(v) In Fig. 4 we show how Gxn/Gs (proportional to the
noise temperature) varies with Gs for several values of the
detuning. These are not linearly proportional (as has been
previously suggested®!?) although there is a region of
near unity slope which may account for the experimental
deterministic chaos is not the origin of the noise rise.
Rather, the underlying dynamics is akin to the picture of
noise-induced hopping between coexisting attractors, !4
but with a twist: The system actually hops between two
closely spaced branches of the same attractor. Finally,
our results hold independent of the physical details of the
systems. Consequently, they apply equally well to recent-
ly proposed modifications of the basic design, e.g., based
on low inductance SQUID’s,?* even though this changes
the full governing equation (1) of the dynamical system.
These dynamical considerations may well prove useful in
optimizing the performance of such devices.

We have benefited greatly from discussions with Marc
Feldman, Carson Jeffries, Edgar Knobloch, Dilip Kon-
depudi, Frank Moss, Bob Miracky, Falsig Pedersen,
Mogens Samuelsen, Peter Scott, and especially John
Clarke. This work was supported by the U.S. Department
of Energy under Contracts No. DE-ACO03-76SF00098
and No. DE-ACO02-76CHO00016, and by the Office of Na-
val Research under Contract No. ONR-1-484010-25858.
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